Potential mobilization of platinum-group elements by siderophores in surface environments.
نویسندگان
چکیده
The emission of platinum-group elements (PGEs) from catalytic converters has led to increased environmental abundances of Pt, Pd, and Rh; however, little is known about the environmental effects and fate of these metals. Organic ligands found in soils have the potential to increase the mobility of PGEs and potentially increase the bioavailability of the metals. Here, we assessed the abilities of microbially produced iron-chelating ligands (siderophores) to complex with the PGEs. Batch experiments using the synthetic siderophore desferrioxamine-B (DFO-B) and powdered metal or oxide forms of Pt, Pd, or Rh showed that DFO-B enhances the solubility of Pt and Pd due to the formation of Pt- and Pd-DFO-B aqueous complexes, with estimated minimum stability constants on the order of 10(17-18) and 10(20-24), respectively. Dissolution rates for Pd are comparable to other mineral dissolution rates with DFO-B. DFO-B had little to no effect on the dissolution of Rh metal or Rh2O3. Our results indicate that siderophores have the potential to increase the mobility of Pt and Pd in environments with limited activities of free trivalent cations. These results have implications for the fate of catalytic converter-emitted Pt and Pd, and support the need for further Pt and Pd toxicity and bioaccumulation studies.
منابع مشابه
Siderophore and Its Applications in the Field of Bioenvironmental Researches
Iron, one of the essential micronutrients, is needed for electron transport and metabolic processes in almost all living organisms. The ferric form (Fe3+) of iron is insoluble in nature and inaccessible at physiological pH (7.35–7.40). Under iron-limited conditions, metal-chelating agents such as siderophores are synthesized by many bacteria and a few fungi. Siderophores have a high affinity fo...
متن کاملPlatinum Extraction Modeling from Used Catalyst by Iodine Solutions
Platinum extraction from spent reforming catalysts in iodine solutions under atmospheric pressure at different temperatures, acid concentration, and iodine spices concentration, catalyst particle size, and impeller agitation speed have been studied in our group. In this system, platinum is oxidized from spent catalyst with I3¯ that is formed ...
متن کاملBiogenic Approach using Sheep Milk for the Synthesis of Platinum Nanoparticles: The Role of Milk Protein in Platinum Reduction and Stabilization
Bio-directed synthesis of nanoparticles is an interesting field of rapid advancement for biologists,chemists and materials scientists, especially in light of efforts to find out green methods of inorganicmaterial synthesis. In the present study, green synthesis of platinum nanoparticles (PtNPs) using sheepmilk is reported for the first time. By adjusti...
متن کاملDesign of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols
We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...
متن کاملDetermination of Captopril using platinum coated nanoporous gold film electrode
In this article electrochemical determination of captopril at the surface of the platinum coated nanoporous gold film (PtNPGF) electrode is reported using the cyclic voltammetry and amperometry. For the preparation of PtNPGF, the surface of NPGF electrode was covered with Cu layer using underpotential electrochemical deposition (UPD).Afterward, the copper layer is replaced with platinum ions vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2007